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Abstract. Specific heat (CV ) measurements in the spin-1/2 Cu2(C2H12N2)2Cl4 system under a magnetic
field up to H = 8.25 T are reported and compared to the results of numerical calculations based on the
2-leg antiferromagnetic Heisenberg ladder. While the temperature dependences of both the susceptibility
and the low-field specific heat are accurately reproduced by this model, deviations are observed above the
critical field HC1 at which the spin gap closes. In this Quantum High Field phase, the contribution of the
low-energy quantum fluctuations are stronger than in the Heisenberg ladder model. We argue that this
enhancement can be attributed to dynamical lattice fluctuations. Finally, we show that such a Heisenberg
ladder, for H > HC1, is unstable, when coupled to the 3D lattice, against a lattice distortion. These results
provide an alternative explanation for the observed low temperature (TC ∼ 0.5 K–0.8 K) phase (previously
interpreted as a 3D magnetic ordering) as a new type of incommensurate gapped state.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 75.40.Mg Numerical simulation
studies

Wide interest is currently devoted to “gapped” spin sys-
tems, both experimentally and theoretically. In one di-
mension, S = 1 Haldane, and alternating and frustrated
S = 1/2 chains provide good examples of such systems.
An intermediate situation between one dimension (1D)
and two dimensions (2D) is provided by the so-called “lad-
der” systems, which couple an even number of quantum
(S = 1/2) chains. As for alternating and frustrated spin
chains, the energy diagram is characterized by an energy
gap ∆S between the singlet ground state (GS) and the
first triplet excited state leading to characteristic mag-
netic and thermodynamic properties at low enough tem-
perature, T < ∆S .

The application of a magnetic field yields drastic
changes in the energy spectrum. In particular, as a result
of the Zeeman splitting undergone by the S = 1 excited
state, a second-order transition occurs at the critical field
HC1 = ∆S/gµB, where g is the gyromagnetic ratio and
µB the Bohr magneton. AboveHC1, the GS becomes mag-
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netic [1] and a continuum of excitations develops giving
rise to “incommensurate” zero-energy fluctuations.

Experimentally, the study of such a Quantum High
Field (QHF) phase, i.e. for H > HC1, requires to work on
systems having a relatively small gap ∆S . Indeed, insulat-
ing ladders such as SrCu2O3 [2] whose structure is closely
related to the parent 2-dimensional cuprate antiferromag-
nets typically have spin gaps larger than 100 K. This ex-
plains that such a phase has rarely been investigated. As
shown by recent studies, an interesting opportunity is pro-
vided by the compound Cu2(C2H12N2)2Cl4 (also known
as CuHpCl) which is thought to behave as an ideal 2-leg
spin-1/2 ladder system with a critical field ofHC1 ' 7.5 T.
Magnetic measurements have been used first to charac-
terize the magnetic parameters of the spin system. The
behavior of the magnetic susceptibility, reproduced from
references [3,4] in Figure 1, is consistent with a gap of the
order of ∆S ∼ 11 K. Specific heat (CV ) measurements in
CuHpCl have recently been performed under a magnetic
field of up to 9 T [5]. In low field (H < HC1), a single maxi-
mum is observed at relatively high temperature (T ∼ J⊥),
and, due to the presence of the energy gap, CV decreases
exponentially at low temperature [∼ exp (−∆S/T )].
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In addition, a second order transition was shown to occur
at very low temperature (0.5 K < TC < 0.8 K) and was
interpreted as the onset of 3-dimensional (3D) magnetic
order.

In the present work, new specific heat measurements
in a field (up to 8.25 T) are presented which mainly focus
on the QHF phase. They were performed by using a scan-
ning adiabatic method. A small known power is applied
to a high purity silicon sample holder and the temper-
ature difference between the sample and a surrounding
radiation screen is measured by a gold-iron thermocou-
ple using a DC squid device as a current amplifier. A
feedback network maintains the radiation screen at the
same temperature as the sample, then strongly reducing
the heat exchange process. The temperature rises slowly
from 0.1 K to 8 K, at a speed as slow as 10 mK/min. The
measurement of the temperature of the radiation screen
then allows the specific heat of the sample to be calcu-
lated. Such a slow drift rate in temperature ensures that all
parts of the sample are in thermal equilibrium, and unlike
pulsed methods the specific heat of non metallic materi-
als with poor thermal diffusivities can be accurately mea-
sured. In the present work, four single crystals glued onto
a mica plate (as in previous susceptibility experiments
[3,4]) were measured. Each crystal weighed approximately
0.5 mg. The contributions of all the addenda – the mica,
varnish, vacuum grease, and the silicon sample holder –
were estimated and subtracted. The behaviors observed
are directly compared to the results of a numerical investi-
gation based on the Heisenberg ladder model. In the QHF
phase, a second maximum develops at low temperature.
Above TC , we observed deviations from the isolated ladder
model (the contribution of the low energy “incommensu-
rate” spin fluctuations occurs at larger fields) which, we
argue, can be due to dynamical lattice fluctuations. We
suggest an alternative explanation for the low temperature
phase in terms of a new incommensurate gapped state.

The Hamiltonian we shall use to describe the com-
pound is the Heisenberg model on a ladder defined by

H = J⊥
∑
j

Sj,1 · Sj,2 + J‖
∑
β,j

Sj,β · Sj+1,β (1)

where β (=1,2) labels the two legs of the ladder (ori-
ented along the x-axis), j is a rung index (j = 1, ...,
L) and J‖ and J⊥ are the bond strengths along and be-
tween the chains respectively. An applied field H in the
z-direction leads to an additional Zeeman term, HZ =
−gµBH

∑
β,j S

z
j,β, with an average value g ' 2.08 [4].

Our numerical approach is based on Lanczos exact di-
agonalization (ED) techniques. At T = 0, clusters with
size up to 2×14 can be handled allowing, after a proper fi-
nite size scaling procedure, for accurate determinations of
the various physical quantities [6]. At finite temperature,
a full diagonalization of 2 × 6, 2 × 8 and 2 × 10 ladders
has been performed. According to previous literature, the
anisotropy ratio ra = J⊥/J‖ ≈ 5. In this regime, the spin
correlation length is smaller than the system sizes so that
finite size corrections become negligible.
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Fig. 1. Theoretical fit of the temperature dependence of the
magnetic susceptibility. The experimental data are taken from
references [3,4]. The anisotropy ratios ra = J⊥/J‖ as well as
the magnetic coupling along the chain J = J‖ are indicated on
the plots. (a) and (b) correspond to various set of parameters
producing two different spin gaps ∆S .

In order to test the choice of parameters in (1), let
us briefly consider the temperature dependence of the
magnetic susceptibility [4]. A comparison between the nu-
merical and the experimental data is shown in Figure 1.
In fact, the quality of the fit is not very sensitive to the
anisotropy ratio (in the range 4.75 ≤ ra ≤ 5.5). Pa-
rameters producing a gap of ∆S ' 10.8 K (Ref. [4]) or
∆S ' 11.3 (Ref. [7]) give excellent fits of the experimental
data. It has been also shown [7–9] that the experimental
behavior of the magnetization vs. H is well-reproduced by
a similar set of parameters.

Concerning the specific heat measurements shown in
Figures 2, the exponential behavior at low temperature
characteristic of the spin gap is suppressed at moderate
magnetic fields. Above 7.5 T, a broad maximum in CV (T )
builds up signaling the emergence of new low energy fluc-
tuations [11]. The numerical calculations of CV (T ) in
Figure 2a based on the above ladder model (with param-
eters leading to HC1 ' 7.7 T) reveal qualitatively the
same behavior. At low field, up to H = 6 T, the agree-
ment with experiment is very good, hence establishing the
relevance of the ladder model (1) in this regime. In the
QHF, however, the maximum observed in the theoreti-
cal calculation appears at higher magnetic fields than in
experiment. Deviations from the theoretical behavior ap-
pear at low temperature for fields above 7.5 T after the
closing of the ladder gap. We argue here that this effect
can be due to lattice fluctuations. In fact, it has been
shown [12] for uniform Heisenberg chains, in the context
of spin-Peierls (SP) transitions, that an underlying spin-
lattice coupling can lead to significant deviations e.g. in
the magnetic susceptibility which can be accounted for by
an effective exchange coupling. As shown in Figure 2b, a
behavior qualitatively similar to the experimental obser-
vations can be obtained by using renormalized exchange
couplings Jeff

µ = c Jµ (µ =⊥, ‖), c ≤ 1, which, according
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Fig. 2. Specific heat vs. T for different values of the magnetic
field. Comparison between experiment (symbols) and theory
(lines) using ra = 5, J‖ = 2.63 K, (a) H < HC1, (b) H > HC1.

to reference [12], is consistent with the effect of a coupling
to the lattice. For increasing field above 7 T, the renor-
malization parameter c decreases signaling an increasing
role played by the lattice coupling.

Motivated by the above discussion, we reasonably
assume the presence of a magneto-elastic coupling along
the chain direction [13] by replacing the second term of
equation (1) by

H‖ = J‖
∑
β,j

(1 + δβ,j)Sj,β · Sj+1,β +
1

2
K
∑
β,j

δ2
β,j , (2)

where the last term corresponds to the (3D) lattice elastic
energy and where the set of parameters {δβ,j} (propor-
tional to the atomic displacements) have to be determined
by minimizing the total energy.

Hamiltonian (2) can lead to a lattice distortion
({δβ,j} 6= 0) in the strong coupling limit, i.e. when
J⊥ � J‖. In this case, for H ≥ HC1, by retaining the
Sz = 0 and 1 states only on each rung (see e.g. [7,14]),
the spin ladder reduces to a 1D spinless fermion model [15]
with a hopping amplitude t = J‖/2 and a nearest neighbor
repulsion V = J‖/2. Physically, a particle corresponds, in
the original spin language, to a Sz = 1 rung triplet exci-
tation so that the effective band filling is directly propor-
tional to the relative magnetization M/Msat in such a way
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Fig. 3. (a) Equilibrium modulation 1 + δj and corresponding
average spin density

〈
(Szj,1 + Szj,2)

〉
vs the position along the

ladder direction calculated on a 2× 12 cluster for ra = 5, K =
0.6 and M/Msat = 2/3. (b) Critical value KC as a function of
the anisotropy ratio ra = J⊥/J‖ for M/Msat = 1/3, 1/2 and
2/3. The system sizes are indicated on the plot.

that 2kF = 2π(M/Msat ). If one neglects the short range
repulsion V between the particles (this should be justified
for low particle density i.e. small magnetization), as in
the usual Peierls transition, a modulation of the hopping
amplitude t = J‖/2 of wavevector 2kF and magnitude δ
opens a gap at the chemical potential and leads to an en-
ergy gain ∆E ∝ δ2 ln (const./δ), for δ � 1. For arbitrary
large K, the minimum of the total energy is then obtained
for an equilibrium value δ ∼ exp (−const.K).

It is important here to stress the novelty of the pre-
vious scenario and the fundamental differences with or-
dinary spin-Peierls transitions as e.g. in CuGeO3 spin
chains. First, the SP instability occurs here above the
critical field HC1 at which the system becomes gapless.
Secondly, the instability is incommensurate with a wave
vector q → 0 at H = HC1. The wave vector varies contin-
uously from 0 to 2π for a magnetic field going from HC1

to HC2, characteristic field at which the system becomes
fully polarized (i.e. the fermion band fully occupied). This
is to be contrasted with the usual zero-field q = π SP in-
stability.

In order to explore the relevance of the previous sce-
nario, a numerical investigation on finite clusters is re-
quired. The following study has been restricted to T = 0
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and simple ratios for M/Msat like 1/3, 1/2 or 2/3. The
minimization of the total energy using expression (2) can
be realized by an ED technique supplemented by a self-
consistent procedure [16]. A typical GS configuration is
shown in Figure 3a for a magnetization M = (2/3)Msat .
The lowest energy is obtained for a perfectly symmetric
modulation of the two chains i.e. δβ,j = δj . The variation
of the distortion δj along the ladder is correlated with that
of the spin density and is a periodic function of period
λF = Msat/M . For the special case M/Msat = 1/2, the
distortion becomes commensurate and corresponds to a
simple dimerization of the lattice, similar to the D-phase
observed in spin-Peierls chains such as CuGeO3 in the
absence of a magnetic field.

In order to study the stability of these modulated
phases let us define a critical elastic constant as

KC = lim
|δj |→0

{2∆E/
∑
j

δ2
j }, (3)

where ∆E corresponds to the magnetic energy gain due
to the equilibrium distortion pattern. The distorted phase
is then stable for K ≤ KC . Our results displayed in Fig-
ure 3b as a function of the ratio J⊥/J‖ show that KC

increases with system size; although it is difficult to ex-
trapolate our results to the thermodynamic limit, they
clearly establish that a small spin-lattice coupling leads
to modulated structures. It is interesting to notice that,
for a small M/Msat (i.e. for H just above HC1), a sim-
ple 2kF modulation is expected (in this regime, the short
range repulsion V becomes irrelevant) while, for M/Msat

close to 1/2 more complicated incommensurate structures
of “soliton lattice” type (i.e. involving an infinite number
of higher harmonics) [17] should be stabilized. All these in-
commensurate structures bear strong similarities with the
I-phase of the SP systems [16] and have similar properties
as e.g. the existence of a gap [18].

We finish this paper by briefly comparing our model
to other proposals in the literature. In reference [5], the
authors interpret the low temperature anomaly of the spe-
cific heat above HC1 in terms of an 3D antiferromagnetic
transition. While our model implies an exponential be-
havior with temperature in the ordered phase, a T 3 law
should hold in the case of a magnetic transition. This is-
sue is quite difficult to resolve experimentally since only
a small temperature range is accessible. However, we note
that our mechanism is compatible with the absence of any
anomaly in the magnetization while this feature seems
a priori difficult to be understood in the case of a mag-
netic ordering. Another alternative has been proposed in
reference [7], the low temperature high field phase being
attributed to a 3D ordering of dimers. In fact, this phase
is very similar to the phase discussed in the present paper
and has identical magnetic properties. However, the phys-
ical origin of the stabilization of the order is somewhat
different; while our spin-Peierls phase is stabilized by the
magneto-elastic coupling to the (3D) lattice, the 3D or-
dering of dimers involve an interchain magnetic coupling.

To conclude, we have shown that the specific heat
data for H ≤ HC1 are quantitatively well-described by

an isolated Heisenberg ladder model. Deviations from the
predictions of this model observed for H > HC1 and
low temperatures are attributed to the effect of a small
magneto-elastic coupling to the 3D lattice. We have shown
numerically that, in this regime, the Heisenberg ladder
becomes unstable against a lattice distortion leading to a
new gapped incommensurate phase.
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